Name: Ky

Class:

M8-U3: Notes#3 – Dilations

Date: _____

Dilation - transformation that produces an image that is the <u>Same Small</u> as the original but <u>not the same size</u>.

- A dilation is <u>Similar</u> to the original figure.
- Dilations are centered around the origin (0, 0), unless otherwise stated.

Scale factor – is image length pre - image length, which is a rotto

- If the scale factor is between 0 and 1, the figure becomes Smaller

Rule: $(x, y) \rightarrow (fx, fy)$ where f represents the scale factor.

Example 1: If the scale factor is 3, how would you write the rule?

$$(x,y) \rightarrow (3x,3y)$$

Example 2:

Triangle ABC has vertices A(0, 2), B(4, 4), and C(-1, 4).

What are the vertices of its image with a scale factor of 4?

$$A(0,2) \rightarrow A'(0,8)$$

 $B(4,4) \rightarrow B'(16,16)$
 $C(-1,4) \rightarrow C'(-4,16)$

Example 3:

Quadrilateral PQRS has vertices P(-2, 4), Q(4, 4), R(4, -2), and S(-4, -4). It is dilated by a scale factor of $\frac{1}{2}$.

a) What are the coordinates of the image? Graph them.

$$(x,y) \rightarrow (\stackrel{\times}{2}, \stackrel{Y}{2})$$
 $P(-2,4) \rightarrow P'(-1,2)$
 $Q(4,4) \rightarrow Q'(2,2)$
 $Q(4,-2) \rightarrow R'(2,-1)$
 $S(-4,-4) \rightarrow S'(-2,-2)$

b) Demonstrate these quadrilaterals are similar by comparing the ratios of the lengths.

$$\frac{6}{3} = 2$$
 $= \frac{3}{6} = \frac{1}{2}$

c) What do you notice about the angle measurements of the two figures?

Example 4:

If the scale factor is $\frac{5}{2}$, how would you write the general rule? Is this an enlargement or a reduction?

$$(x,y) \Rightarrow (\xi_x, \xi_y)$$

Example 5:

Quadrilateral A'B'C'D' is a dilation of quadrilateral ABCD. Find the scale factor.

Classify the dilation as an enlargement or a reduction.

it got smaller

 $A(6,0) \rightarrow A'(2,0)$

the scale factor must be 1/3.

Example 6:

Triangle XYZ is graphed below. Draw and label Triangle X'Y'Z' after a dilation using a scale factor of two.

$$(x,y) \to (2x,2y)$$

$$X(-1;1) \to x'(-2;2)$$

$$Y(-1,2) \to y'(-2,4)$$

$$\stackrel{*}{\to} \pm (1,1) \to \pm'(2,2)$$

What will be the coordinates of point Y" after a reflection of polygon X'Y'Z' over the x-axis?

Answer
$$\frac{1}{1}(-2-4)$$