Name: _

1. What is the domain of the function?

$$f(x)=7-\frac{3}{x-2}$$

- A. all real numbers
- B. all real numbers less than or equal to 7
- C. all real numbers except 2
- D. all real numbers except 7
- 2. If $f(x) = x^3$ is transformed into the graph of $h(x) = (x + 4)^3 + 3$, which of the following describes the transformation?
 - F. Translation of 4 units to the right and 3 units up
 - G. Translation of 4 units to the left and 3 units up
 - H. Translation of 3 units to the right and 4 units up
 - J. Translation of 3 units to the left and 4 units up
- 3. Compared to its 'parent' function $f(x) = x^2$, which of these best describes the function $f(x) = -x^2 3$?
 - A. reflected about the *y*-axis and wider
 - B. reflected about the *y*-axis and narrower
 - C. reflected about the *x*-axis and translated up

H. 2

- D. reflected about the x-axis and translated down
- 4. On the graph shown, what is f(-2)?

F. 4 G. 3

J. 0 K. –2

		Y III
7	4	$\mathbf{\lambda}$
Y	2	
		x
-4 -2		2 🖌 4
	-2	

5. The graph of $y = x^2$ is to be translated left 2 units and up 5 units. Write an equation to represent the image of the graph after the translation.

Α.	$y = (x - 2)^2 + 5$	B. $y = (x+2)^2 + 5$
C.	$v = -2x^2 + 5$	D. $v = 5x^2 - 2$

- 6. Which best describes the domain of the relation graphed?
 - F. {-4,0}
 - G. $-4 \le x \le 0$
 - H. *y* ≥ −3
 - J. all real numbers

What is the domain of the function shown?

- A. $x \ge 0$ B. $y \ge 0$
- C. $x \le 0$ D. $y \le 0$
- E. all real numbers
- 8. What are the domain and range of the function $y = 2(x + 4)^2 + 1$?
 - F. D: $x \ge 4$; R: all real numbers
 - G. D: $x \le 4$; R: all real numbers
 - H. D: all real numbers; R: $y \le 1$
 - J. D: all real numbers; R: $y \ge 1$
 - K. D: *x* ≤ 4; R: *y* ≤ 1
- 9. Determine the domain for the following function.

 $f(x) = -\sqrt{x+3} + 4$

A. $[3, \infty)$ B. $[-3, \infty)$ C. $(-\infty, 4]$ D. $[4, \infty)$

Date:

10. What value(s) are not in the range of f(x)?

- 11. Which of the following is always true for all functions?
 - I. For every *x* there is only one *y*.
 - II. For every *y* there is only one *x*.
 - III. The domain is the set of real numbers.
 - A. I only B. II only
 - C. I and III only D. II and III only
- 12. Given the graph, describe the range.

- 13. If $f(x) = (x + 1)^3$ is transformed into the graph of $f(x) = -(x + 1)^3$, which of the following describes the transformation?
 - A. Reflection across x-axis
 - B. Reflection across y-axis
 - C. Horizontal translation 1 unit to the left
 - D. Horizontal translation 1 unit down

- 14. Let $f(x) = \sqrt{x}$ and $g(x) = \sqrt{x} + 4$. Which of the following statements is true about the graphs of the functions?
 - F. g(x) is f(x) translated 4 units to the left
 - G. g(x) is f(x) translated 4 units to the right
 - H. g(x) has the same domain as f(x)
 - J. g(x) has the same range as f(x)
- 15. Given the graph, describe the domain.

- 16. Given $y = -x^2$. If the function is shifted up 5 units, which equation describes the new function?
 - F. $f(x) = -x^2 5$ H. $f(x) = -5x^2$ K. $f(x) = -(x - 5)^2$ G. $f(x) = -(x + 5)^2$ J. $f(x) = -x^2 + 5$
- 17. The graph of $y = ax^2$ is shifted up 3 units and right 5 units. Which equation represents the resulting graph?

Α.	$y = a(x-5)^2 + 3$	В.	$y = a(x+5)^2 + 3$
C.	$y=a(x-3)^2+5$	D.	$y = a(x+3)^2 + 5$

18. Which does *not* represent *y* as a function of *x*?

F.	$x = y^2 + 2$	G.	$y = x^2 + 2$
н.	x = y + 8	J.	y = -x + 8

- 19. Which equation represents the graph of $y = x^2$ translated 1 unit right and 2 units down?
 - A. $y = -(x 1)^2 2$ B. $y = (x - 1)^2 - 2$ C. $y = -(x + 1)^2 + 2$ D. $y = (x + 1)^2 - 2$

20. The graphs of $f(x) = \sqrt{x}$ and $f(x + k) = \sqrt{x + k}$ are shown.

What is the value of k?

F. -16 G. -4 H. 4 J. 16

21. The graph of $f(x) = x^2 + 3$ is translated to produce the graph of $g(x) = (x + 2)^2 + 3$. In which direction was the graph of *f* translated?

Α.	up	Β.	down	C.	left	D.	right

22. Find the range of the function below.

	Î	4	y		
		-2-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					\mathcal{A}
-4	-2			2	4
-4	-2	-2-		2	4

F. $x \ge 0$	G. $y \ge 0$
H. <i>x</i> ≤ 0	J. <i>y</i> ≤ 0

- K. all real numbers
- 23. Which of the following *most* accurately describes the translation of the graph $y = (x + 3)^2 2$ to the graph of $y = (x 2)^2 + 2$?
 - A. up 4 and 5 to the right
 - B. down 2 and 2 to the right
 - C. down 2 and 3 to the left
 - D. up 4 and 2 to the left

24. Look at this graph of a function. (y is a function of x.)

What is the domain of the function?

- F. all real numbers
- G. all real numbers except -4
- H. all real numbers greater than or equal to 0
- J. all real numbers greater than or equal to -4
- 25. Use the graph of the function below to answer the question.

Which description of the function is true?

- A. The function is linear and always increasing.
- B. The function is nonlinear and always increasing.
- C. The function is decreasing from negative infinity to -1 and increasing from -1 to infinity.
- D. The function is decreasing from negative infinity to -2 and increasing from -2 to infinity.

Problem-Attic format version 4.4.314 © 2011-2017 EducAide Software

Licensed for use by Aubrey Parker Terms of Use at <u>www.problem-attic.com</u>

FUNCTIONS 2 (dom, range, translations) 3/2/2018

1. Answer: Objective:	C [F.IF.1]	14. Answer: Objective:	H [L.04C]
2. Answer: Objective:	G [L.06A]	15. Answer: Objective:	D [F.IF.5]
3. Answer: Objective:	D [A.07C]	16. Answer: Objective:	J [A.07C]
4. Answer: Objective:	H [A2.F.1.1]	17. Answer:	A
5.		18. Answer:	F
Answer: Objective:	B [A.07C]	19. Answer:	В
6. Answer: Objective:	J IE IE 51	20. Answer:	н
7.	[, .1]	21. Answer	C
Answer: Objective:	A [F.IF.5]	22.	G
8.	,	Objective:	L.07I
Answer: Objective:	J [A2.F.1.1]	23. Answer:	A
9. Answer: Objective:	B [A2.F.1.1]	24. Answer:	J
10. Answer: Objective:	F [F.IF.5]	25. Answer:	В
11. Answer: Objective:	A [F.IF.1]		
12. Answer: Objective:	G [F.IF.5]		
13. Answer: Objective:	A [L.06A]		