1. Use the vertical-line test to determine which graph does NOT represent a function.
[A]

[B]

[C]

[D]

2. Determine which equation represents y as a function of x.
[F] $y=8 x-4$
[G] $x=8$
[H] $x=-4 y^{2}$
[J] $x=10$
3. The graph of the equation $x y=-4$ is symmetric with respect to which of the following?
[L] the y-axis
[M] the x-axis
[N] the line $y=-x+4$
[$\mathbf{P}]$ the line $y=x$
4. Find the domain and range of the function.
$f(x)=\sqrt{x-2}$,
[A] Domain: [0, ∞); Range: $[2, \infty)$
[B] Domain: $[-2, \infty)$; Range: $[0, \infty)$
[C] Domain: $[0, \infty)$; Range: $[-2, \infty)$
[D] Domain: [2, ∞); Range: [$0, \infty$)
5. Find the domain and range of the function.
$f(x)=-4 x^{2}+2$
[F] Domain: $(-\infty, \infty)$; Range: $[2, \infty)$
[G] Domain: $(-\infty, 2]$; Range: $(-\infty, \infty)$
[H] Domain: [2, ∞); Range: $(-\infty, \infty)$
[J] Domain: $(-\infty, \infty)$; Range: $(-\infty, 2]$
6. Determine the intervals on which the function is increasing, decreasing, or constant.

$y=-(x+1)^{2}+3$
[L] Increasing on $(-\infty,-1)$; Decreasing on $(-1, \infty)$
[M] Increasing on $(3, \infty)$; Decreasing on $(-\infty, 3)$
[N] Increasing on $(-1, \infty)$; Decreasing on $(-\infty,-1)$
[$\mathbf{P}]$ Increasing on $(-3, \infty)$; Decreasing on $(-\infty,-3)$
7. Determine the intervals on which the function is increasing, decreasing, or constant.

[A] Decreasing on (-8, -2); Increasing on $(-2,0)$
[C] Decreasing on $(-8,-6)$ and $(-2,0)$; Increasing on $(-6,-2)$
[D] Increasing on $(-8,-6)$ and $(-2,0)$; Decreasing on $(-6,-2)$
8. Identify the graph that represents an even function.
[F]

[G]

[H]

[J]

9. Describe the transformation that occurs in the function $f(x)=(x-5)^{2}+6$.
[L] Horizontal shift of $f(x) 5$ units to the right Vertical shift of 6 units upward
[\mathbf{N}] Horizontal shift of $f(x) 5$ units to the left Vertical shift of 6 units downward
[M] Horizontal shift of $f(x) 5$ units to the right Vertical shift of 6 units downward
[P] Horizontal shift of $f(x) 5$ units to the left Vertical shift of 6 units upward
10. Since 1993, Theo Brooks has owned a bookstore called The Page

Turner. The number of books B, in thousands, that The Page Turner has sold each year can be modeled by the function $B(t)=t^{2}+22 t+400$
where t is the number of years after 1993. Using this model, estimate the number of books sold in 1999
11. Identify the graph that represents neither an even nor an odd function.
[F]

[G]

[H]

[J]

12. Identify the graph that represents an odd function.
[L]

[M]

[N]

[P]

Reference: [2.1.2.12]
[1] [A] \qquad

Reference: [2.1.2.21]
[2] [F]

Reference: [3.1.1.1]
[3] [P]

Reference: [1.2.1.24]
[4] [D]

Reference: [1.2.1.25]
[5] [J]

Reference: [1.2.3.31]
[6] [L]

Reference: [1.2.3.33]
[7] [D]

Reference: [1.2.6.46]
[8] [J]

Reference: [1.3.2.56]
[9] [L]

Reference: [1.1.4.19]
[10] 568,000

Reference: [1.2.6.46]
[11] [G]

Reference: [1.2.6.46]
[12] [L]

