1. \overline{BE} is the perpendicular bisector of \overline{AC} and \overline{FD} . Is \overline{BE} the midsegment of the trapezoid?

- 2. What is the ratio of the length of the midsegment of an equilateral triangle to the sum of the triangle's sides?
- **3.** Given: Trapezoid *ABCD* with midsegment \overline{EF} . If EF = 12 and DC = 15, find *AB*.

4. Solve for x given BD = 3x + 2 and AE = 4x + 8. Assume B is the midpoint of \overline{AC} and D is the midpoint of \overline{CE} .

5. Find the area of the rectangle if AC = 12 and BD = 25.

6. Refer to the figure below.

If EF = 5x + 6 and AC = 3x - 2, then what is the length of \overline{BF} ?

7. Refer to the figure below.

A. If BC = 15, then $LN = _$. B. If AB = 3x + 5 and NM = 2x + 1, then NM =

8. For the given triangle, state the relationships between \overline{AB} and \overline{DF} .

_•

- 9. The coordinates of the midpoints of the sides of a triangle are L(0, 1), M(4, 0), and N(2, -2). Find the coordinates of the vertices of the triangle.
- 10. The midpoints of the sides of a triangle are A(4, 5), B(5, 6), and C(6, 2). What are the coordinates of the vertices?
- 11. Find the area of the rectangle if AC = 13 and BD = 21.

[A] 68.25 [B] 34 [C] 273 [D] 136.5

12. If AC = 13 and BD = 20, find the lengths of the midsegments of $\triangle ABC$ and $\triangle ADB$.

- [A] Midsegment of $\triangle ABC = 40$, midsegment of $\triangle ADB = 26$.
- **[B]** Midsegment of $\triangle ABC = 26$, midsegment of $\triangle ADB = 40$.
- [C] Midsegment of $\triangle ABC = 10$, midsegment of $\triangle ADB = 6.5$.
- **[D]** Midsegment of $\triangle ABC = 6.5$, midsegment of $\triangle ADB = 10$.
- **13.** For the triangle shown, VS = 5 and VQ = 6. Then PQ =_____.

14. If *B* is the midpoint of \overline{AC} , *D* is the midpoint of \overline{CE} , and BD = 13, find AE.

15. Which is the midsegment of trapezoid *ACDF*? Assume *B* is the midpoint of \overline{AC} and *E* is the midpoint of \overline{DF} .

16. Solve for x given $BD = \frac{7}{2}x + 2$ and AE =

3x+8. Assume *B* is the midpoint of \overline{AC} and *D* is the midpoint of \overline{CE} .

17. In the figure shown, \overline{EF} is the midsegment of trapezoid *ABCD*. Find *x*.

[1]	
[2]	
[3]	
[4]	
[5]	
[6]	
[7]	
[8]	
[9]	
[10]	
[11]	
[12]	
[13]	
[14]	
[15]	
[16]	
[17]	

Reference: [3.7.1.47]

[1] <u>No.</u>

Reference: [3.7.1.48]

[2] 1:6

Reference: [3.7.2.51]

[3] 9

Reference: [5.4.1.40]

[4] <u>2</u>

Reference: [5.4.1.42]

[5] 75

Reference: [5.4.1.44]

[6] 28

Reference: [5.4.1.46]

[7] A. 7.5B. 7

Reference: [5.4.1.47]

[8]
$$\overline{AB} \parallel \overline{DF}$$
 and $AB =$

 $\frac{1}{2}DF$

Reference: [5.4.2.48]

[9] (-2, -1), (2, 3), (6, -3)

Reference: [5.4.2.49] [10] (3, 9), (7, 3), (5, 1)

Reference: [5.4.1.43]

[11] [A]

Reference: [3.7.2.50]

[12] [D]

Reference: [5.4.1.45]

[13] <u>[C]</u>

Reference: [3.7.1.45]

[14] [D]

Reference: [3.7.1.46]

[**15**] [B]

Reference: [5.4.1.41]

[16] <u>[B]</u>

Reference: [3.7.2.49]

[17] <u>[C]</u>