1. $\overline{B E}$ is the perpendicular bisector of $\overline{A C}$ and $\overline{F D}$. Is $\overline{B E}$ the midsegment of the trapezoid?

2. What is the ratio of the length of the midsegment of an equilateral triangle to the sum of the triangle's sides?
3. Given: Trapezoid $A B C D$ with midsegment $\overline{E F}$. If $E F=12$ and $D C=15$, find $A B$.

4. Solve for x given $B D=3 x+2$ and $A E=$ $4 x+8$. Assume B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$.

5. Find the area of the rectangle if $A C=12$ and $B D$ $=25$.

6. Refer to the figure below.

If $E F=5 x+6$ and $A C=3 x-2$, then what is the length of $\overline{B F}$?
7. Refer to the figure below.

A. If $B C=15$, then $L N=$ \qquad .
B. If $A B=3 x+5$ and $N M=2 x+1$, then $N M=$
\qquad .
8. For the given triangle, state the relationships between $\overline{A B}$ and $\overline{D F}$.

9. The coordinates of the midpoints of the sides of a triangle are $L(0,1), M(4,0)$, and $N(2,-2)$. Find the coordinates of the vertices of the triangle.
10. The midpoints of the sides of a triangle are $A(4,5), B(5,6)$, and $C(6,2)$. What are the coordinates of the vertices?
11. Find the area of the rectangle if $A C=13$ and $B D$ $=21$.
[A] 68.25
[B] 34
[C] 273
[D] 136.5

12. If $A C=13$ and $B D=20$, find the lengths of the midsegments of $\triangle A B C$ and $\triangle A D B$.

[A] Midsegment of $\triangle A B C=40$, midsegment of $\triangle A D B=26$.
[B] Midsegment of $\triangle A B C=26$, midsegment of $\triangle A D B=40$.
[C] Midsegment of $\triangle A B C=10$, midsegment of $\triangle A D B=6.5$.
[D] Midsegment of $\triangle A B C=6.5$, midsegment of $\triangle A D B=10$.
13. For the triangle shown, $V S=5$ and $V Q=6$. Then $P Q=$ \qquad .

[A] 11
[B] 5
[C] 10
[D] 12
14. If B is the midpoint of $\overline{A C}, D$ is the midpoint of $\overline{C E}$, and $B D=13$, find $A E$.

[A] 39
[B] 169
[C] 13
[D] 26
15. Which is the midsegment of trapezoid $A C D F$? Assume B is the midpoint of $\overline{A C}$ and E is the midpoint of $\overline{D F}$.

16. Solve for x given $B D=\frac{7}{2} x+2$ and $A E=$ $3 x+8$. Assume B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$.

[A] -1
[B] 1
[C] $\frac{7}{4}$
[D] $-\frac{4}{7}$
17. In the figure shown, $\overline{E F}$ is the midsegment of trapezoid $A B C D$. Find x.

[A] 15
[B] 16
[C] 13
[D] 14
\qquad
[2] \qquad
[3] \qquad
[4] \qquad
[5] \qquad
[6] \qquad
[7] \qquad
[8] \qquad
[9] \qquad
[10] \qquad
[11] \qquad
[12] \qquad
[13] \qquad
[14] \qquad
[15] \qquad
[16] \qquad
[17]

Reference: [3.7.1.47]
[1] No.

Reference: [3.7.1.48]
[2] 1:6

Reference: [3.7.2.51]
[3] 9

Reference: [5.4.1.40]
[4] 2

Reference: [5.4.1.42]
[5] 75

Reference: [5.4.1.44]
[6] 28

Reference: [5.4.1.46]
[7] A. 7.5B. 7

Reference: [5.4.1.47]
[8] $\overline{A B} \| \overline{D F}$ and $A B=\frac{1}{2} D F$

Reference: [5.4.2.48]
[9] $(-2,-1),(2,3),(6,-3)$

Reference: [5.4.2.49]
[10] $(3,9),(7,3),(5,1)$

Reference: [5.4.1.43]
[11] [A]

Reference: [3.7.2.50]
[12] [D]

Reference: [5.4.1.45]
[13] [C]

Reference: [3.7.1.45]
[14] [D]

Reference: [3.7.1.46]
[15] [B]

Reference: [5.4.1.41]
[16] [B]

Reference: [3.7.2.49]
[17] [C]

