The Midsegment of a Triangle is a ______ that connects the

_____ of the _____ of the triangle.

D and E are ______.

 \overline{DE} is a ______.

Every triangle has _____ midsegments!

Midsegment Theorem

The segment connecting the midpoints of two sides of a triangle is _____ to the ____ side and is _____ as long as that side.

Example 1: In the diagram, \overline{ST} and \overline{TU} are midsegments of the triangle ΔPQR . Find \overline{PR} and \overline{TU} .

Example 2: In the diagram, \overline{XY} and \overline{ZY} are midsegments of the triangle ΔLMN . Find \overline{MN} and \overline{ZY} .

Example 3: In the diagram, \overline{ED} and \overline{DF} are midsegments of the triangle ΔABC .

Find x, \overline{DF} , and \overline{AB} .

Identifying Parallel Segments

What are the three pairs of parallel segments in triangle ΔDEF ?

