Name: _____

<u>Unit 2 – Transformations</u>

Translation

 $tranSLate \rightarrow Slide$

Moving your original point to the left (-) or right (+) changes the

Moving your original point up (+) or down (-) changes the _____.

Original	Translate up 3	Translate down 2	Translate to the left	Translate to the right 4
(x, y)	units	units	1 unit	units
	(x, y+3)	(x, y-2)	(x-1, y)	(x+4, y)

_.

Reflection

$\mathsf{reFLection} \rightarrow \mathsf{FLip}$

Treat each axis as a ______. Your new figure should be the ______ of the original one.

Original	Reflect across the y-axis	Reflect across the x-axis	Reflect across the origin
(x, y)	(-x, y)	(x, -y)	(-x, -y)

Rotation

roTation \rightarrow Turn

You are going to rotate to the next quadrant every 90° depending on if the question says clockwise or counterclockwise.

 0° clockwise = _____ $^{\circ}$ counterclockwise 90°clockwise = _____ $^{\circ}$ counterclockwise 180° clockwise = _____ $^{\circ}$ counterclockwise 270° clockwise = _____ $^{\circ}$ counterclockwise

		1	
Quadrant I	Quadrant II	Quadrant III	Quadrant IV
Rotate 0° -	Rotate 90°	Rotate 180°	Rotate 270°
original	counterclockwise around	counterclockwise around	counterclockwise around
	the origin	the origin	the origin
(x, y)	(-y, x)	(-x, -y)	(y, -x)

Dilation

Dilation \rightarrow Shrink or Expand

If the scale factor is < 1, the figure will get ______ aka _____.

If the scale factor is > 1, the figure will get ______ aka _____.

Original	Dilate by a scale factor of 2	Dilate by a scale factor of $\frac{1}{2}$
(x, y)	(2x, 2y)	$\left(\frac{x}{2},\frac{y}{2}\right)$

Parent Functions

Name	Equation	Graph
Linear	y = x	y , , , , , , , , , , , , , , , , , , ,
Quadratic	$y = x^2$	
Cubic	$y = x^3$	
Absolute Value	y = x	
Square Root	$y = \sqrt{x} \text{ or } y = x^{\frac{1}{2}}$	y 4 3 2 1 1 1 2 3 4 5 6 7 8 9 x x x x
Cubed Root	$y = \sqrt[3]{x}$ or $y = x^{\frac{1}{3}}$	
Exponential	$y = e^x$	

The parent function of a square root is $f(x) = \sqrt{x}$ (basically this is as simple as it gets). We can transform this function by multiplying, adding to, or subtracting numbers from it. You will have to be able to look at an equation and determine what has been done to the parent function and what that change is making the graph do. The table that I gave you along with the notes will be a lot of help with this.

<u>For example:</u> What are the transformations of $f(x) = \sqrt{x+4}$?

Step 1: Write out the parent function so you can see the differences. $f(x) = \sqrt{x}$

Step 2: Look for differences. I notice that the graph has a +4 under the radical.

Step 3: State what the difference means. The +4 under the radical means that the graph is shifted to the left 4 units.

State the transformations of the following equations.

1.
$$f(x) = \sqrt{x-2}$$

2. $f(x) = \sqrt{x+3} + 2$

- 3. $f(x) = -\sqrt{x} + 4$
- 4. $f(x) = 2\sqrt{x+1} 4$
- $f(x) = -\frac{1}{2}\sqrt{x+6}$
- 6. $f(x) = 3\sqrt{(x-2)} 1$
- 7. $f(x) = -2\sqrt{x}$
- 8. Write the equation for an "unstretched" square root function that has been shifted 3 units right and 2 units down.

Domain & Range

Domain \rightarrow x values, what you can put in to the equation Range \rightarrow y values, the numbers you get out of the equation

Example: Find the domain and range of the following graph.

*You try these:

9. Find the domain and range of the graph.

10. Find the domain and range of the graph.

11. Find the domain and range of the function $y = \sqrt{x+3}$. (If you get stuck, graph it.)

Increasing & Decreasing Intervals

The function f(x) increases when the values of both x and y are increasing.

A function f(x) decreases when the values of x are increasing and the values of y are decreasing. A function f(x) is <u>constant</u> when the x values increases and the y value remains the same. Example: Indicated where the graph is increasing, decreasing, or constant.

*You try these:

12. Indicate where the graph is increasing, decreasing, and constant. Use interval notation.

13. Indicate where the graph is increasing, decreasing, constant. Use interval notation.

End Behavior

		Degree	
a : c		Even	Odd
Sign of	Positive	Up, Up	Down, Up
Coefficient	Negative	Down,	Up, Down
Coefficient		Down	

If you are given the equation, you can memorize this table or graph the equation and see which way the arrows go.

Down, Down

Up, Down

Down, Up

Even & Odd Functions

If you can fold the graph along the y-axis and the graph look the same on both sides, the function is even.

If you can turn your paper upside down and the graph still look the same, the function is odd.

If neither of these things work, the function is neither even nor odd.

