Unit 3 - Rational \& Radical Functions

Exponent Rules

1. $x^{4} * x^{6}=$
2. $\left(y^{7}\right)^{2}=$
3. What is the perimeter of a square with a side length of $2 x^{3}$?
4. $\frac{z^{2}}{z^{4}}=$
5. $\frac{x^{(y+2)}}{x^{(y+1)}}=$
6. $\left(\frac{2 d}{d^{2}}\right)^{3}=$

Radical \& Rational Exponents If the expression is written in radical form, rewrite it in fractional exponent form. If the expression is in fractional exponent form, rewrite it in radical form.
7. $d^{\frac{1}{3}}=$
8. $\left(4 x^{3} y^{4}\right)^{\frac{3}{4}}=$
9. $\left(6 x^{2} y\right)^{\frac{2}{3}}=$
10. $\sqrt[3]{2 y}=$
11. $-\sqrt[4]{(3 x)^{6}}=$
12. $\sqrt[2]{\left(3 x^{2} y\right)^{4}}=$

Simplify Radicals

13. $\sqrt{16}=$
14. $\sqrt{\frac{175}{7}}=$
15. $5 \sqrt{180}=$
16. $-2 \sqrt{72}=$
17. $\sqrt{6300}=$
18. $7 \sqrt{96}=$

Add \& Subtract Radicals Remember: You can only combine like radicals, just like when you combine like terms!!!!
19. $\sqrt{x}+2 \sqrt{x}+3 \sqrt{x}=$
20. $3 \sqrt{7}-5 \sqrt{7}=$
21. $\sqrt{6}+\sqrt{6}=$
22. $\sqrt{x}+4 \sqrt{y}-4 \sqrt{x}-2 \sqrt{y}=$
23. $4 \sqrt{32}+3 \sqrt{18}-\sqrt{8}=$
24. $6 \sqrt[3]{4}-6 \sqrt{2}+3 \sqrt[3]{4}-3 \sqrt{2}=$

Multiply Radicals Remember: multiply what is in front of the radicals, multiply what's inside the radicals (they turn in to one radical), then simplify the radical.
25. $\sqrt{2} * \sqrt{6}=$
26. $2 \sqrt{3} * 4 \sqrt{12}=$
27. $4 z^{3} \sqrt{8 x^{5} y} * 2 x \sqrt{3 z^{4}}=$
28. $\sqrt{3}(\sqrt{x}-\sqrt{y})=$
29. $5 \sqrt{5}(\sqrt{3}+4)+\sqrt{3}(6-\sqrt{5})=$
30. $(6+\sqrt{x})(2-\sqrt{x})=$
31. $4(4+2 \sqrt{x})(\sqrt{x}-4)=$

Rationalize the Denominator

32. $\frac{\sqrt{5}}{\sqrt{3 y}}=$
33. $\frac{x-3}{\sqrt{x-4}}=$

Divide Radicals

34. $\frac{\sqrt{90}}{3 \sqrt{26}}=$
35. $\frac{\sqrt{5}}{5 \sqrt{7}}=$
36. $\frac{\sqrt{20 x y}}{3 \sqrt{5 x y^{5}}}=$
37. $\frac{\sqrt{7 x^{5} y^{3}}}{4 \sqrt{3 x y^{5}}}=$

Solving Radical Equations

38. $\sqrt{x+3}=4$
39. $\sqrt{4 x-2}-3=4 x$
40. $\sqrt{a^{2}-4}=4 a+1$
41. $\sqrt{x-2}=3 x$
42. $\sqrt[3]{(x-2)^{3}}+4=20$

Direct Variation

$y=k x$
Y varies directly with x .
Example: Y varies directly with x . If $y=4$ and $x=2$, find x when $y=6$.

$$
\begin{array}{ll}
y=k x & y=k x \\
4=k(2) & 6=(2) x \\
2=k & 3=x
\end{array}
$$

*You try these:
43. Is this an example of direct variation? If so, write the equation to represent this data.

x	y
-2	-6
-1	-3
0	0
1	3
2	6

44. Y varies directly with x . If $y=16$ and $x=8$, find x when $y=4$.
45. Y varies directly with x . If $y=10$ and $x=2$, find y when $x=3$.

Inverse Variation

$y=\frac{k}{x}$
Y varies inversely with x .
Example: Y varies inversely with x . If $y=4$ and $x=2$, find x when $y=6$.

$$
\begin{array}{rr}
y=\frac{k}{x} & y=\frac{k}{x} \\
4=\frac{k}{2} & 6=\frac{8}{x} \\
8=k & 6 x=8 \\
& x=\frac{8}{6}=\frac{4}{3}
\end{array}
$$

*You try these:
46. Is this an example of inverse variation? If so, write the equation to represent this data.

x	y
-2	-6
-1	-12
1	12
2	6
3	4

REMEMBER: If the problem says directly or jointly, you are going to multiply the variable by k. If the problem says inversely, you are going to divide by the variable!!!!!
47. Y varies inversely with x. If $y=16$ and $x=8$, find x when $y=4$.
48. Y varies inversely with x . If $y=10$ and $x=2$, find y when $x=3$.
49. The number of hours needed to paint a house varies inversely with the number of painters working. A 2400 square foot house can be painted in 27 hours by 6 painters. How many painters would it take to paint the house in 18 hours?

Joint Variation

$y=k x z$
Y varies jointly with x and z .
Example: y varies jointly with x and z . If $y=18, x=2$, and $z=3$, find y when $x=4$ and $z=2$

$$
\begin{array}{ll}
18=k(2)(3) & y=(3)(4)(2) \\
18=k(6) & y=24 \\
3=k &
\end{array}
$$

*You try these:
50. y varies jointly with x^{2} and a^{2}. If $y=8, x=3$, and $a=4$, find y when $x=4$ and $a=2$
51. y varies jointly with x and z . If $y=8, x=2$, and $z=3$, find y when $x=3$ and $z=4$

Combined Variation

$y=\frac{k x z}{w}$
Y varies jointly with x and z and inversely with w .
Example: Y varies jointly with x and z and inversely with w . If $y=3, x=2, z=3$ and $w=4$, find y when $x=$ $4, z=3$ and $w=5$
$y=\frac{k x z}{w}$
$y=\frac{k x z}{w}$
$3=\frac{k(2)(3)}{4}$
$y=\frac{(2)(4)(3)}{5}$
$12=k(6)$
$y=\frac{24}{5}$
$2=k$
$y=4.8$
*You try these:
52. Y varies jointly with x and z and inversely with w . If $y=5, x=2, z=3$ and $w=1$, find y when $x=$ $3, z=2$ and $w=3$
53. Y varies jointly with x and z and inversely with w . If $y=5, x=4, z=3$ and $w=2$, find z when $y=$ $4, x=3$ and $w=6$

Complex \& Imaginary Numbers

Complex Number

$$
\begin{array}{ll}
i^{0}=1 & i^{3}=-i \\
i^{1}=i & i^{4}=1 \\
i^{2}=-1 &
\end{array}
$$

54. $(5-3 i)(7+2 i)$
55. $\frac{6+3 i}{5+2 i}$
56. Solve: $x^{2}+4 x+5=0$
